44. Eine einfache Allencarbonsäureester-Synthese mittels der *Wittig*-Reaktion¹)

von Robert W. Lang²) und Hans-Jürgen Hansen

Institut für Organische Chemie der Universität, Pérolles, CH-1700 Freiburg i. Ü.

(27.XII.79)

A Simple Synthesis of Alkyl Allenecarboxylates (Allenic Esters) by the Wittig-Reaction

Summary

A simple one-pot synthesis of variously substituted a-allenic esters (7-23, cf. Scheme 4) is described. Either of the phosphonium salts 1 and 2 or the phosphoranes 3-6 in methylene chloride (or acetonitrile) when treated with acid chlorides at room temperature in the presence of triethylamine give the corresponding allenic compounds in fairly good yields (cf. Tables 3a and 3b). This procedure shows for the first time, that the Wittig-reaction with acid chlorides as starting material can also be used for the synthesis of 2-H-substituted allenic esters (7-13; for numbering see Scheme 7). The deuterium labeled compounds 26-31 (cf. Scheme 7) are prepared in the same manner. The course of the reaction involves an *in situ* generation of ketenes which are trapped by the resonance stabilized phosphonium ylides. The thus formed betains readily decompose, already at room temperature, to the anticipated allenes by the well known Wittig-reaction.

1. Einleitung. – Allene mit Elektronenakzeptor-Substituenten sind reaktive, elektrophile Reaktionspartner (vgl. z. B. [1-6]) – insbesondere bei *Michael*-Additionen [7] [8] – und vom präparativen sowie mechanistischen Standpunkt aus betrachtet auch interessante Dipolarophile bei Cycloadditionen mit Diazoverbindungen [9] (vgl. [1]), Nitril-iminen, Nitril-oxiden, Aziden [10] sowie Nitril-yliden [11]. Darüberhinaus haben die besonderen strukturellen Gegebenheiten des Allengerüstes allgemein zu zahlreichen stereochemischen und spektroskopischen Untersuchungen angeregt (vgl. [12]). Zur Synthese von Allenen mit Elektronenakzeptor-Substituenten werden vorwiegend Isomerisierungs-, Umlagerungs- und Olefinierungsreaktionen verwendet (vgl. [1] [13] [14] sowie neuere Beispiele in [15-17]). Wir benötigten im Zusammenhang mit ¹H-NMR.-spektroskopischen Untersuchungen in Gegenwart von Europium-Verschiebungsreagenzien [18] [19] einfache, vorwiegend alkyl-

¹) Teilweise vorgetragen an der Herbstversammlung der Schweizerischen Chemischen Gesellschaft am 20. Oktober 1979 in Bern.

²) Teil der geplanten Dissertation, Universität Freiburg i. Ü.

substituierte Allencarbonsäureester. Da sich die *Wittig*-Reaktion zur Synthese dieser Verbindungen aufgrund der leicht zugänglichen Ausgangsmaterialien besonders eignet, versuchten wir die bislang bekannten Reaktionen (vgl. [14] und dort zit. Lit. sowie [20]) zu verallgemeinern. Im folgenden berichten wir über die präparativen und mechanistischen Aspekte eines einfachen «Eintopf-Verfahrens» zur Herstellung von zum Teil neuen und nach der *Wittig*-Variante bisher nicht zugänglichen Allencarbonsäureestern.

2. Synthese von Allencarbonsäureestern. – Zwei Reaktionsweisen nach der Wittig-Variante haben sich besonders bewährt (Schema 1, Wege A und B).

Weg A: Bereits 1922 gelang Lüscher [21] die Umsetzung von Diphenylmethylidentriphenylphosphoran mit Diphenylketen zum Tetraphenylallen. Nachdem sich Wittig & Haag [22] eingehend mit dieser Reaktionsweise auseinandergesetzt hatten, stellten 1966 Bestmann & Hartung [23] 2-Methyl-2,3-butadiensäure-äthylester auf diese Weise her. Allerdings war bereits zuvor mittels der Wittig-Horner-Emmons-Reaktion, d.h. durch die Umsetzung von deprotoniertem (Diäthoxyphosphoryl)essigsäure-äthylester mit Äthylphenylketen, 4-Phenyl-2,3-hexadiensäure-äthylester bereitet worden [24]. In der Folge wurde diese Reaktionsweise von verschiedenen Autoren weiter ausgearbeitet [6] [20] [25-28].

Der Anwendungsbereich von Weg A beschränkte sich dabei im allgemeinen auf die Verwendung von isolierbaren Ketoketenen³), zumal die reaktiveren Aldoketene³) – ausser Keten selbst [27] – nicht im präparativen Maßstab eingesetzt werden konnten [20a]⁴).

Weg B: Besonders leicht zugänglich wurden Allencarbonsäureester durch die von Bestmann & Hartung [23] [31] entwickelte Umsetzung von Phosphoranen mit Säurechloriden. Auf diese Weise wurden auch Allencarbonsäureester bereitet, welche formal einer Umsetzung von Phosphoranen mit Aldoketenen entsprachen (bez. Mechanismus vide infra). Dieser Syntheseweg wird auch heute noch beschritten (vgl. z.B. [32]). Die entsprechende Wittig-Horner-Emmons-Variante des Weges B wurde von Runge et al. [20a] ausgearbeitet, liefert jedoch im allgemeinen etwas geringere Ausbeuten als das Verfahren von Bestmann & Hartung.

Grundsätzlich ist der Weg B nur dadurch eingeschränkt, dass die eingesetzten resonanzstabilisierten Phosphorane am Ylid-C-Atom als weiteren Substituenten

³) Nach alter Gepflogenheit nennen wir hier disubstituierte Ketene, Ketokene und monosubstituierte Aldoketene (vgl. [29]).

⁴) In einer Arbeit über die Herstellung von 4-Methylidenpyranen wurde darauf hingewiesen, dass in situ erzeugte Ketene (z. B. aus Diazokörpern über eine Wolff-Umlagerung oder aus Säurechloriden durch Einwirkung von Basen) prinzipiell durch stabilisierte Phosphorane zu entsprechend substituierten Allenen abgefangen werden können. Die als Zwischenstufen postulierten Allenylverbindungen konnten jedoch nicht isoliert werden [30] (vgl. auch [7]).

kein H-Atom tragen dürfen⁵). Der Möglichkeit, auch diese letzte Hürde zu überwinden, sind die im folgenden beschriebenen Experimente gewidmet.

Es ist bekannt, dass das zweite Äquivalent Phosphoran, welches in der Variante von Bestmann & Hartung (Weg B) als Base zur Deprotonierung der intermediär durchlaufenen Acylphosphoniumverbindung dient (vide infra), prinzipiell durch eine entsprechende andere Base (z. B. Triäthylamin) ersetzt werden kann [33] [34]. Durch die generelle Verwendung von Triäthylamin gelang es uns, die Allencarbonsäureester-Synthese zu vereinfachen und zu erweitern (Schema 2). Die wesentlichen Punkte der in Schema 2 zusammengefassten Reaktionsprinzipien sind: a) Die Umsetzungen I und II mit Säurechloriden ohne a-Substituenten (z. B. Propionylchlorid) führen allgemein zu Allencarbonsäureestern, welche bislang nicht über eine Wittig-Reaktion zugänglich waren, da nun selbst Phosphorane mit einem H-Atom am Ylid-C-Atom diese Reaktion eingehen; b) Die Phosphoniumsalze reagieren unter Einwirkung von 2 Mol-Äquiv. Triäthylamin mit Säurechloriden direkt zu Allencarbonsäureestern (Umsetzung I und III), wodurch das aufwendige Trocknen der aus wässeriger Lösung gewonnenen Phosphorane (Umsetzung II und IV) umgangen wird (vgl. dazu [18], Fussnote 19); c) Alle Umsetzungen I-IV laufen bei Raumtemperatur in kurzer Zeit ab; d) Beim Verwenden von Acetonitril als Lösungsmittel lassen sich die gebildeten Allencarbonsäureester auf einfache Weise isolieren (vgl. exper. Teil).

Um die allgemeine Anwendbarkeit der Reaktionen I-IV zu überprüfen, setzten wir die Phosphorverbindungen 1-6 (Schema 3) mit verschiedenen Säurechloriden in Gegenwart von Triäthylamin bei Raumtemperatur in Methylenchlorid oder

⁵) Alkoxycarbonylphosphorane mit einem H-Atom am Ylid-C-Atom reagieren mit Säurechloriden nach Acylierung unter Umylidierung [33].

				Schema 4				
	R^{3} $C = C$							
Nr.	R ⁱ	R ²	R ³		Nr.	R ^I	R ²	R ³
7	CH3	Н	Н		14	C ₂ H ₅	н	Н
8	CH_3	CH3	Н		15	C_2H_5	CH_3	Н
9	C_2H_5	CH ₃	Н		16	C_2H_5	CH ₃	CH ₃
10	CH ₃	C ₂ H ₅	CH3		17	C_2H_5	(CH ₂) ₄ CH ₃	н
11	CH3	$C(CH_3)_3$	н		18	CH ₃	$C(CH_3)_3$	Н
12	C_2H_5	$C(CH_3)_3$	Н		19	CH ₃	C ₆ H ₅	Н
13	CH ₃	C ₆ H ₅	Н		20	C_2H_5	C_6H_5	Н
					21	C_2H_5	C ₆ H ₅	C ₂ H ₅
					22	C_2H_5	COOCH ₃	н
					23	C_2H_5	Cl	Cl

Schema 5

Phosphoran	Bedingungen	Ausbeute	Allencarbonsäureester
,COOC₂H₅ (C.H.)₂P=C	2 Mol-Äquiv. 5 CH₃CH₂COCI CH₂CI₂, ti ^b , 50 Std.	0 % ^{a)}	H ₃ C C≈C=C ^{COOC} 2H₅
,5	$\begin{array}{llllllllllllllllllllllllllllllllllll$	71 %	/ н н 9
COOC₂H₅ (C₅H₅)₁P=C	2 Mol-Äquiv. 6 CH ₃ CH ₂ COCI CH ₂ CI ₂ , H ^{b)} , 49 Std.	66 % ^{c)}	H_3C $C=C=C < COOC_2H_5$
сн _э 6	6 + N(C₂H₅)₃ CH₃CH₂COCI CH₂CI₂, RT., 60 Min.	77%	н∕ ^{сн} ₃ 15

^a) Vgl. Fussnote 5.

b) 11 steht für Kochen unter Rückfluss.

^c) Unsere optimierte Ausbeute (vgl. [18]). Nach [26] wurde 15 auf diese Weise nur in 45% Ausbeute synthetisiert.

a) Durch zweimalige Umkristallisation von 1 aus siedendem D_2O ; D-Gehalt $\ge 96\%$.

b) Durch Umsetzung von 3 mit Trideuteriomethyljodid nach [35]; D-Gehalt $\ge 97\%$.

^a) Angabe der relativen Isotopenverteilung (s. Kap. 6).

^b) Die Numerierung der Atome folgt der systematischen Bezeichnung der 2,3-Butadiensäureester (vgl. auch Fussnote 7 in [18]).

Acetonitril um. Dieses nicht weiter optimierte «Eintopf-Verfahren»⁶) ergibt die Allencarbonsäureester 7-23 (Schema 4; vgl. auch Tab. 3, exper. Teil) im Vergleich zu den bislang bekannten Methoden [20a] [23] in guten Ausbeuten; die besonderen Vorteile lassen sich aus den Umsetzungen der Phosphorane 5 und 6 mit Propionylchlorid zusammenfassen (Schema 5). Während ausgehend von 5 nur die Triäthylamin-Variante zum Allencarbonsäureester 9 führt, lässt sich 15 nach unserer Methode unter milderen Bedingungen synthetisieren⁷).

Nach obiger Methode liessen sich auch die isotopenmarkierten Allencarbonsäureester 26-31 (*Schema 7*; vgl. auch *Tab. 4*, exper. Teil) aus den leicht zugänglichen deuteriummarkierten Phosphoniumsalzen 24 und 25 (*Schema 6*) herstellen.

3. Spektroskopische Charakterisierung der Allencarbonsäureester. - Aufgrund ihrer IR.- und ¹H-NMR.-Spektren lassen sich Allencarbonsäureester im allgemeinen eindeutig und hinreichend charakterisieren.

Im IR.-Spektrum (Film) erscheint im Bereich von 1970-1950 cm⁻¹ (je nach Substituenten) eine ausgeprägte, für Allencarbonsäureester charakteristische Bande, welche in den Fällen terminaler H-Substitution als Dublett auftritt (7 und 14, vgl. *Tab. 3b*, exper. Teil). Diese Absorptionslage wird den antisymmetrischen Streckschwingungen des dreiatomigen Gerüst-Oszillators zugeschrieben⁸). Im

⁶) Die Phosphoniumsalze und Säurechloride sind im allgemeinen leicht zugänglich und grossenteils käuflich (vgl. exper. Teil).

⁷) Interessant ist auch der Befund, dass die Allencarbonsäureester 19 und 20 aus den Umsetzungen mit Phenylacetylchlorid nach unserem Verfahren in guten Ausbeuten isoliert werden (vgl. dazu [20a] [23]).

⁸) Über Untersuchungen von IR.-Spektren verschiedenartig substituierter Allene s. [36] (vgl. auch [12b]).

Bereich um 1080 cm⁻¹ liegen die Absorptionen der symmetrischen Streckschwingungen, welche «IRverboten» sind und nur bei unsymmetrischer Gerüst-Substitution als Bande von schwacher bis mittlerer Intensität erscheinen [12b]. Das meistens breite Signal der Estercarbonylgruppe erscheint im Bereich von 1730-1715 cm⁻¹ (typisch für olefinisch konjugierte Ester [37]).

Im ¹*H-NMR.-Spektrum* (90 MHz, CCl₄) von Allencarbonsäureestern absorbieren Protonen, welche direkt an das kumulierte System gebunden sind, mit einer Bandbreite von *ca.* 0,7 ppm und Zentrum bei 5,3 ppm, wobei das Signal für H–C(2) im tieffeldverschobenen Bereich erscheint. Trägt C(4) einen π - und/oder σ -Akzeptorsubstituenten, so führt dies zu einer allgemeinen Tieffeldverschiebung⁹). Die Signalzentren von Methylgruppen, welche direkt an das Allengerüst gebunden sind, liegen bei 1,8 ppm (vgl. *Tab. 3b*, exper. Teil). Die signifikanten Kopplungskonstanten von Allencarbonsäureestern (s. Schema 8) lassen sich teilweise nur in Gegenwart von Europium-Verschiebungsreagenzien ermitteln [19].

Schema 8^a)

^a) Angegeben sind Mittelwerte von J_{H,H} in Hz; bez. Substituenteneinflüsse vgl. [12b] [19] [39].

4. Mechanistische Untersuchungen. – Die voranstehend beschriebenen präparativen Aspekte unserer Allencarbonsäureester-Synthese – namentlich der neue Zugang zu den 2-H-substituierten Verbindungen 7-13 werfen die Frage auf, ob die bekannten mechanistischen Vorstellungen unsere experimentellen Befunde erklären.

Aufgrund der bisher beschriebenen Untersuchungen lässt sich für die Umsetzungen von resonanzstabilisierten Phosphoranen 32 (R^1 =COOR, R^2 =H, Alkyl) mit den Ketenen 33 der in Schema 9 wiedergegebene Mechanismus formulieren.

Im Falle von $R^1 = R^2 = CH_3$ und $R^3 = R^4 = C_6H_5$ wurde das entsprechende Betain 34 isoliert und durch Erhitzen auf ca. 150° in das Allenderivat 36 übergeführt [22], was bedeutet, dass im erwähnten Beispiel der geschwindigkeitsbestimmende Schritt die Abspaltung von Triphenylphosphinoxid ist. Dagegen zeigt eine kinetische Studie über die Reaktion von resonanzstabilisierten Phosphoranen (z. B. 32 mit $R^1 = COOR$, $R^2 = H$) mit Benzaldehyd, dass dabei die Bildung des Betains 34 geschwindigkeitsbestimmend ist [40], d.h. die Aktivierungsenergie der Triphenylphosphinoxid-Abspaltung sinkt stark, wenn als Ausgangssubstanz ein resonanzstabilisiertes Ylid eingesetzt wird. Diese Tatsache trifft offenbar auch für die entsprechenden Allencarbonsäureester-Synthesen (ausgehend von isolierbaren Ketenen) zu, denn diese lassen sich schon bei Raumtemperatur ausführen [19] [26-28]. Primär dürften die σ - und π -Akzeptoreigenschaften der Esterfunktion für den raschen Zerfall des Betains 34 *via* das Oxaphosphetan 35 [41] verantwortlich sein. Andererseits wirkt sich das im Vierring auftretende sp^2 hybridisierte C-Atom gegenüber dem weit häufigeren Fall, dass in Oxaphosphetanen zwei sp^3 -hybridis disierte C-Atom vorliegen, aus Gründen der sich aufbauenden Ringspannung eher nachteilig auf die Ausbildung von 35 und auf die damit verbundene rasche Abspaltung von Triphenylphosphinoxid aus¹⁰).

⁹) Bezüglich semiempirischer Berechnungen von ¹H-NMR.-Resonanzlagen in verschieden substituierten Allenen vgl. [38].

¹⁰) Die Abspaltung von Triphenylphosphinoxid aus acylierten Methoxycarbonylmethyliden-triphenylphosphoranen unter Bildung von Propiolsäure-methylestern erfolgt erst bei 220-250° [42]. Hierbei sollten Oxaphosphetene mit zwei sp²-hybridisierten C-Atomen durchlaufen werden. Vgl. auch die Umsetzungen von Enolat-yliden [43].

a) Die gezeichneten Formeln drücken keine bevorzugte Stereoselektivität aus.

Bestmann & Hartung haben den Mechanismus ihrer Allencarbonsäureester-Synthese – Umsetzungen von resonanzstabilisierten Phosphoranen 37 ($\mathbb{R}^2 \neq H$) mit Säurechloriden 38 – eingehend untersucht [23]; die grundlegenden Reaktionsschritte sind in Schema 10 zusammengefasst.

Im ersten Reaktionsschritt wird ein Mol-Äquiv. des Phosphorans 37 zum isolierbaren Salz 39 acyliert¹¹), welches im darauffolgenden Reaktionsschritt mit dem zweiten Mol-Äquiv. 37 als Base zum Betain 40 y-deprotoniert wird. Der abschliessende Zerfall von 40 zum Allencarbonsäureester 41

^a) Die gezeichneten Formeln drücken keine bevorzugte Stereoselektivität aus.

¹¹) Mit der Isolierung von 39 (Umsalzung zum Jodid) haben die Autoren gezeigt, dass die Reaktion nicht über *in situ* erzeugte Ketene (durch Einwirkung von 37 als Base auf 38 gebildet) nach der in Schema 9 angegebenen Sequenz abläuft.

Schema 11

ist mit der Sequenz $34 \rightarrow 36$ (Schema 9) vereinbar. Untersuchungen über den kinetischen Verlauf dieser Umsetzungen sind uns nicht bekannt; es darf jedoch aufgrund der voranstehenden Betrachtungen angenommen werden, dass auch hier der geschwindigkeitsbestimmende Schritt im Zweistufenprozess der Betain-Bildung verankert ist¹²).

Wir haben bereits darauf hingewiesen, dass Phosphorane vom Typ 37 mit $R^2 = H$ nach diesem Reaktionsmodus (Schema 10) keine Allencarbonsäureester ergeben. Der Grund für diese Einschränkung ist die stark erhöhte a-Acidität in 39 (Ladungsstabilisierung in der konjugierten Base durch drei Akzeptorsubstituenten); d.h. die ausschliessliche a-Deprotonierung in Gegenwart von 37 führt unter Umylidierung (vgl. dazu [33]) zum acylierten Phosphoran, welches unter den erwähnten Bedingungen nicht weiterreagiert¹³). Die Möglichkeit, mit unserer Modifizierung der Reaktionsbedingungen (Schema 2) dennoch 2-H-substituierte Allencarbonsäureester 41 ($R^2 = H$) zu synthetisieren, veranlasste uns, in erster Linie den γ -Deprotonierungsschritt ($39 \rightarrow 40 - - \rightarrow 41$, Schema 10) näher zu untersuchen. Würde die Reaktion nach den modifizierten Bedingungen mit 37 ($R^2 = H$) ebenfalls über eine primäre Acylierung verlaufen $(37+38\rightarrow 39)$, so müsste unter Einwirkung von Triäthylamin ein konkurrierendes Gleichgewicht y- versus a-Deprotonierung auftreten, aus welchem die Allencarbonsäureester abgefangen werden könnten. Für diese Untersuchungen stellten wir nach bekannten Verfahren die Verbindungen 42-45 her (Schema 11; vgl. Tab. 1 und 2, exper. Teil).

Anhand der Phosphoniumsalze 42 und 43 (welche den als Jodid isolierbaren primären Acylierungsprodukten 39 ($\mathbb{R}^2 \neq H$) entsprechen), verfolgten wir den Einfluss der Basenstärke auf die Bildung von Allencarbonsäureestern 41 ($\mathbb{R}^2 \neq H$) bei Raumtemperatur in Methylenchlorid (Standardbedingungen). Die Ergebnisse (*Tab. 5*, exper. Teil) zeigen, dass Allencarbonsäureester dann gebildet werden, wenn der p K_a -Wert der eingesetzten Base über 8 liegt¹⁴). Bei der Einwirkung von Strychinin (p $K_a = 8,26$ [44]) auf 43 isolierten wir den entsprechenden racemischen

¹²) Wir haben die Acylierungen der Phosphorane 4 und 6 (Schema 3) bei Raumtemperatur in Gegenwart äquimolarer Mengen *t*-Butylacetylchlorid ¹H-NMR.-spektroskopisch (in CD₂Cl₂) verfolgt und gefunden, dass nach 72 Std. noch *ca.* 50% des freien Säurechlorids vorliegen; die Bildung von Allencarbonsäureestern wird nicht beobachtet.

¹³) Analog den Angaben in Fussnote 12 haben wir die Acylierung der Phosphorane 3 und 5 (Schema 3) ¹H-NMR.-spektroskopisch untersucht. Die Säurechloridkonzentration nimmt nur langsam ab (in 10 Std. ca. 30%) und es werden umylidiertes Phosphoran und protoniertes Ausgangsylid beobachtet; die entsprechenden Allencarbonsäureester entstehen nicht, können aber nach Zugabe von wenig Triäthylamin sofort mittels DC. und GC. nachgewiesen werden.

¹⁴) Diese Resultate korrelieren prinzipiell mit den Hinweisen in der Literatur [33] [34]. Die pK_a-Werte der freien Phosphorane 3 und 5 sind 8,8 bzw. 8,95 (gemessen in 80proz. wässerigem Alkohol bei RT.) [40]. Demgegenüber dürften die Verbindungen 4 und 6 aufgrund des σ-Donoreffektes der Methylgruppe eine leicht erhöhte Basizität aufweisen.

Allencarbonsäureester 18 ($R^1 = C_2H_5$) in 7% Ausbeute (vgl. Tab. 5, exper. Teil). Interessant ist die Beobachtung, dass der analoge racemische Allencarbonsäureester 18 ($R^1 = CH_3$) bei der direkten Umsetzung von 4 mit t-Butylacetylchlorid in Gegenwart von einem Mol-Äquiv. Strychnin unter sonst gleichen Reaktionsbedingungen in 60% Ausbeute erhalten wurde. Dieser Befund lässt sich nur mit stereochemischen Argumenten erklären, zumal die direkte Umsetzung zeigt, dass die Basenstärke von Strychnin prinzipiell für die Synthese von Allencarbonsäureestern ausreicht. Ein Angriff des stark raumbeanspruchenden Strychnins auf die sauren y-Protonen in 43 ist aufgrund der raumerfüllenden Nachbargruppen offenbar behindert, und wir postulieren deshalb, dass der direkte Zugang zu 18 aus dem Phosphoran 4 und Säurechlorid primär eine Abfangreaktion von in situ erzeugtem Aldoketen ist¹⁵). Somit verläuft die Hauptreaktion in der direkten Variante nach vorgelagerter, basenkatalysierter Ketenbildung aus dem Säurechlorid (vgl. [45]) - nach dem in Schema 9 wiedergegebenen Mechanismus. Dies bedeutet, dass der von Bestmann & Hartung [23] vorgeschlagene Reaktionsweg (Schema 10) unter den modifizierten Bedingungen mit Strychnin als Base eine untergeordnete Rolle bei der Bildung von 41 mit $\mathbb{R}^2 \neq H$ spielt¹⁶).

Wesentlich einfacher scheint die Beurteilung des Verlaufs von Reaktionen mit Phosphoranen des Typs 37 ($\mathbb{R}^2 = \mathbb{H}$) zu sein, zumal hierbei Allencarbonsäureester nur mit Triäthylamin als Base entstehen (vgl. *Schema 5*). Um zu zeigen, dass unter den vorliegenden Bedingungen die Allencarbonsäureester-Bildung nicht über konkurrierende γ - und α -Deprotonierungs-/Protonierungsreaktionen erfolgt, haben wir die Verbindungen 44 und 45 in Gegenwart von katalytischen Mengen Triäthylamin mit Triäthylamin-hydrochlorid umgesetzt (vgl. *Tab. 5*, exper. Teil)¹⁷). In beiden Fällen wurde kein Allencarbonsäureester gebildet, d.h. dass die Bildung der Verbindungen 7–13 nur über den Weg von *in situ* erzeugten Ketenen – diese werden von Phosphoranen des Typs 37 ($\mathbb{R}^2 = \mathbb{H}$) nach dem Reaktionsmodus in *Schema 9* abgefangen – möglich ist.

5. Zusammenfassung. – Durch die Umsetzung von resonanzstabilisierten Phosphoranen mit Säurechloriden in Gegenwart von Triäthylamin haben wir die allgemeine Anwendbarkeit der *Wittig*-Reaktion auf die Allencarbonsäureester-Synthese (vgl. Schema 4) aufgezeigt. Die besonderen Vorteile unserer Methode sind der Zugang zu neuen 2-H-substituierten Allencarbonsäureestern und die Möglichkeit, unter milden Bedingungen (Raumtemperatur, kurze Kontaktzeiten der Reaktanten) Allencarbonsäureester zu synthetisieren, welche aufgrund ihrer bekannten Unbeständigkeit [23] bislang noch nicht oder nur in geringen Ausbeuten hergestellt werden konnten (z. B. 19 und 20, vgl. dazu [20a] [23]). Die Reaktionen verlaufen unter den gegebenen Bedingungen über *in situ* erzeugte Aldo- oder Ketoketene¹⁸), die

¹⁵) In der Literatur wird die *In-situ*-Bildung von Aldoketenen mittels Brucin ($pK_a = 8,28$ [44]) für die Synthese von optisch aktiven β -Lactonen beschrieben [45].

¹⁶) Geplante Untersuchungen sollen zeigen, inwieweit sich diese beiden Reaktionswege in unserer Allencarbonsäureester-Synthese ausgehend von stabilisierten Phosphoranen des Typs **37** ($R^2 \neq H$) in Gegenwart von Triäthylamin als Base überschneiden.

¹⁷) Die entsprechenden acylierten Zwischenprodukte **39** ($R^2 = H$) sind über die Phosphorane **3** und **5** aufgrund der bereits erwähnten Umylidierungs-Reaktion [33] nicht ohne weiteres zugänglich.

¹⁸) Der Mechanismus der Ketenbildung aus Acylhalogeniden mit Basen (z. B. Triäthylamin) scheint noch nicht im Detail bekannt zu sein [46].

Schema 12

^a) Mögliche Parallelreaktion bei der Umsetzung von Phosphoranen des Typs 37 ($\mathbb{R}^2 \neq \mathbb{H}$).

^b) Mögliche Parallelreaktion bei der Umsetzung von Phosphoranen des Typs 37 ($R^2 = H$).

durch resonanzstabilisierte Phosphorane abgefangen werden. Inwieweit die Allencarbonsäureester-Bildung in Gegenwart von Triäthylamin auch über die in *Schema 12* angegebenen acylierten Formen ablaufen kann, soll durch weitere Untersuchungen geklärt werden.

	Schema 13	
R-CH=C=CD-COOCH3 =		R-CD=C=CH-COOCH ₃
46	47	48

6. Anhang. – Die bei der Umsetzung der deuterium-markierten Phosphoniumsalze 24 und 25 beobachteten Deuterium-Verteilungen (Schema 7) in den Allencarbonsäureestern 26-29 sind höchstwahrscheinlich auf eine basenkatalysierte Isomerisierung ($46 \approx 47 \approx 48$), wie sie in Schema 13 wiedergegeben ist, zurückzuführen (vgl. dazu [47]). Auslösender Faktor der 1,3-H(D)-Verschiebung ist offenbar die durch hyperkonjugative Effekte erhöhte γ -Acidität in 46 bzw. 48. Aufgrund der gesteigerten Isomerisierungsrate durch eine zusätzliche benzylische Aktivierung ist der D-Anteil an C(4) erwartungsgemäss für 29 ($\equiv 46$ mit R=Phenyl) grösser als für 27 bzw. 28 ($\equiv 46$ mit R=Methyl bzw. t-Butyl).

Wir danken Herrn F. Nydegger für die Ausführung der Elementaranalysen und Herrn Dipl.-Chem. M. Cosandey, Institut für Organische Chemie der Universität Freiburg i. Ü., für die Aufnahme von ²H-NMR.-Spektren. Zu besonderem Dank sind wir Herrn Dr. habil. W. Runge, Studiengruppe für Systemforschung, Heidelberg, für die freundliche Überlassung von Vorabdrucken seiner Arbeiten [12] verpflichtet. Die vorliegende Arbeit wurde in dankenswerter Weise vom Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung unterstützt.

		Tabelle 1. Phosphonii	umsalze: Experin,	tentelle Daten		
(C ₆ H ₅	⇔ R³ ⇒P−C−coor X⇔ R²	Summenformel (MG.)	Smp. [°]	Ausbeute [%]	¹ H-NMRSpektrum ^a) ð [ppm], J [Hz]	Lit.
-	$R^1 = CH_3, R^2 = R^3 = H, X = Br$	C ₂₁ H ₂₀ BrO ₂ P (415.27)	169-170 ^b)	87,0°)	8,20-7,50 (<i>m</i> , 15 arom. H); 5,50 (<i>d</i> , J=13.8.2 H–C(2)); 3.56 (<i>s</i> . CH ₃ O)	[48]
7	$R^1 = CH_3, R^2 = R^3 = D, X = Br$	$C_{21}H_{18}BrD_2O_2P$ (417.29)	168-169	90'0d)	vgl. 1; D-Gehalt ≥96%	
4	$R^1 = R^2 = CH_3, R^3 = H, X = I$	C ₂₂ H ₂₂ IO ₂ P (476,30)	152-154	70,5°)	8,20-7,55 (<i>m</i> , 15 arom. H); $6,25$ (<i>a</i> × <i>qa</i> , <i>J</i> = 18,0 und 7,5, H-C(2)); 3,58 (s, CH ₃ O); 1.70 (<i>a</i> × <i>a</i> , <i>J</i> = 18,0 und 7,5, 3 H-C(3))	[35]
52	$R^{1} = CH_{3}, R^{2} = CD_{3}, R^{3} = H, X = I$	$C_{22}H_{19}D_3IO_2P$ (479.32)	151-153	70,5¢)	vgl. 49; D-Gehalt ≥ 97%	
7	$R^{1} = C_{2}H_{3}, R^{2} = CH_{3}, R^{3} = H, X = Br$	C ₂₃ H ₂₄ BrO ₂ P (443,32)	178-180	80,0°)	8,25-7,55 (m, 15 arom. H); 6,53 ($d \times qa$, J = 18,0 und 7,5, H $-C(2)$); 4,05 (qa , J = 7,0, CH ₃ CH ₃ O); 1,70 ($d \times d$, J = 18,0 und 7,5, 3 H $-C(3)$); 1,02 (t , J = 7,0, CH ₃ CH ₃ O).	[23] [48]
4	$R^{1} = C_{2}H_{3}, R^{2} = COCH_{3}, R^{3} = CH_{3}, X = I$	C ₂₅ H ₂₆ IO ₃ P (532.36)	146	53,0 ⁽)	8, 10^{-7} , 53 (<i>m</i> , 15 arom. H); 4,20 (<i>qa</i> , <i>J</i> = 7,1, CH ₃ CH ₂ O); 2,63 (<i>s</i> , 3 H–C(4)); 2,18 (<i>d</i> , <i>J</i> = 18,0, H ₃ C–C(2)); 1,13 (<i>t</i> , <i>J</i> = 7,1, CH ₃ CH ₂ O).	[23]
1 3	$R^{1} = C_{2}H_{5}, R^{2} = COCH_{2}C(CH_{3})_{3}, R^{3} = CH_{3}, X = I$	C ₂₉ H ₃₄ IO ₃ P (588.47)	156	53,0 ^E)	8.14-7,53 (m, 15 arom. H); 4,32-3,93 (m, CH ₃ CH ₂ O); 2,84 (<i>AB</i> -System, 2 H–C(4)); 2,10 (<i>A</i> , <i>J</i> = 18,0, H ₃ C–C(2)); 1,12 (<i>t</i> , <i>J</i> = 7,0, CH ₃ CH ₂ O); 0,99 (<i>s</i> , 9 H, C(CH ₃) ₃)	
(((90 MHz in CDCl ₃ .					

Umkristallisiert aus siedendem H₂O.

Bez. a-Bromester. \$ \$ \$ \$ \$ \$ \$ \$ \$

Bez. 1; 2mal umkristallisiert aus siedendem D₂O.

Bez. 3; umgesetzt mit CH₃I bzw. CD₃I (vgl. [35]).

Bez. Acetylchlorid; umkristallisiert aus Methanol/Äther. Bez. 1-Butylacetylchlorid; umkristallisiert aus Acetonitril/Äther. Herstellung in Analogie zur Vorschrift für 42 (vgl. [23]).

(c _e H _s)	sP=c_coor	Summenformel (MG.)	Smp. [°]	Ausbeute [%]	lH-NMRSpektrum ^a) & [ppm], J [Hz]	Lit.
e	$R^1 = CH_3, R^2 = H$	C ₂₁ H ₁₉ O ₂ P (334 36)	159-160	87,0 ^b)	7,85-7,25 (<i>m</i> , 15 arom. H); 3,45 (s, CH ₃ O); 2,83 (br. s. H-C(2))	[18] [48]
4	$R^{1} = R^{2} = CH_{3}$	C ₂₂ H ₂₁ O ₂ P (348.38)	151-153	46,0 ^b)	7,85-7,25 (m, 15 arom. H); 3,32 (s, CH ₃ O); 1,55 (d, <i>J</i> = 13.5, H ₃ C-C(2))	[18]
Ś	$\mathbf{R}^{1} = \mathbf{C}_{2}\mathbf{H}_{5}, \mathbf{R}^{2} = \mathbf{H}$	Č ₂₂ H ₂₁ Ó2P (348,38)	126-127	6	7,85-7,25 (m, 15 arom. H); 3,88 (qa, J = 7,0, CH ₃ CH ₂ O); 2,77 (br. s, H–C(2)); 1,02 (t. J = 7,0, CH ₂ CH ₂ O)	
9	$R^{1} = C_{2}H_{5}, R^{2} = CH_{3}$	C ₂₃ H ₂₃ O ₂ P (362,41)	159-160	75,0 ^b)	7,80–7,20 (m, 15 arc) H); 3,77 (qa, $J = 7,0$, CH ₃ CH ₂ O); 1,55 (d, $J = 13,5$, H ₃ C–C(2)); 0,75 (hr. t. CH ₅ O)	[18] [23] [48]
4	$\mathbf{R}^{1} = \mathbf{C}_{2}\mathbf{H}_{5}, \mathbf{R}^{2} = \mathbf{COCH}_{3}$	C ₂₄ H ₂₃ O ₃ P (390,42)	152	95,0 ^d)	7,86-7,30 (m, 15 arom H); $3,73$ (ga, $J = 7,0$, CH ₃ CH ₃ OI); $2,46$ (s, 3 H $-C(4)$); 0.66 (t, $J = 7,0$ CH ₃ CH ₃ OI); $2,46$ (s, 3 H $-C(4)$); 0.66 (t, $J = 7,0$ CH ₃ CH ₃ OI).	[42]
45	$\mathbf{R}^{1} = \mathbf{CH}_{3}, \mathbf{R}^{2} = \mathbf{COCH}_{2}\mathbf{C}_{6}\mathbf{H}_{5}$	C ₂₉ H ₂₅ O ₃ P (452,49)	147-149	88,5 ^d)	7,65-7,10 (m, 20 arom. H); 4,22 (s, 2 H–C(4)); 3,15 (s, CH ₃ O)	[42]
G G G G G	90 MHz; 3-6 in CD ₂ Cl ₂ , 44 und 45 in CDC Bez. a-Bromester. Käufliches Produkt (<i>Fluka AG</i>). Bez. Säurechlorid, Ylid umkristallisiert aus	l ₃ . Essigester/Pentan.				

Tabelle 2. Phosphoniumylide: Experimentelle Daten

Helvetica Chimica Acta - Vol. 63, Fasc. 2 (1980) - Nr. 44

R	COOR1	Summen-	Phos-	Säurechlorid	Lösungs-	Aus-	Sdp. ^c)
ç	=c=c<_	formel ^a)	phor-	(Vorschrift)	mittel	beute	[°/Torr]
R²′	п	(MG.)	ver-		(Reak-	[%]	
			bin-		tions-		
			dung	°)	dauer)		
7	$R^1 = CH_3, R^2 = R^3 = H$	$C_5H_6O_2$	1	CH ₃ COCl	CH ₂ Cl ₂	40	40/14
		(98,10)		(A)	(10 Min.)		
8	$R^1 = CH_3, R^2 = CH_3,$	$C_6H_8O_2$	3	CH ₃ CH ₂ COCl	CH ₂ Cl ₂	58	60/14
	$R^3 = H$	(112,13)		(B)	(30 Min.)		
9	$R^1 = C_2 H_5$, $R^2 = C H_3$,	C7H10O2	5	CH ₃ CH ₂ COCl	CH ₂ Cl ₂	71	75/14
	$R^3 = H$	(126,16)		(B)	(40 Min.)		
10	$R^1 = CH_3, R^2 = C_2H_5,$	C ₈ H ₁ ,0,	1	CH ₃ CH ₂ (CH ₃)CHCOCl	CH ₃ CN	25	70/14
	$R^3 = CH_3$	(140,18)		(A)	$(2^{1/2} Std.)$		
11	$R^1 = CH_2$	CoH14O2	1	(CH ₃) ₃ CCH ₂ COCl	CH ₃ CN	55	85/14
	$R^2 = (CH_3)_2 C, R^3 = H$	(154.21)		(A)	(2 Std.)		
12	$R^1 = C_2 H_5$	C10H16O2	5	(CH ₁) ₁ CCH ₂ COCl	CH ₃ CN	55	100/14
	$R^2 = (CH_3)_3C$, $R^3 = H$	(168,24)		(B)	(2 Std.)		
13	$R^1 = CH_2, R^2 = C_6H_5,$	C11H10O2	3	C ₆ H ₅ CH ₅ COCl	CH ₃ CN	23	60/0,1
	$R^3 = H$	(174,20)		(B)	$(1\frac{1}{2})$ Std.)		
D3							
` `	=C=C						
R ² /	CH3						
14	$R^1 = C_2 H_s$	C ₇ H ₁₀ O ₂	2	CH ₂ COCl	CH ₂ Ch	59	50/14
	$R^2 = R^3 = H$	(126.16)	_	(A)	(30 Min.)		
		(120,10)	6	CH ₂ COCl	CH ₂ Ch	61	
			v	(B)	(30 Min)	•••	
15	$B^1 = C_2 H_c B^2 = C H_2$	CeHaoo	2	CH ₂ CH ₂ CH ₂ COCl	CH ₂ Ch	74	55/14
15	$R^{3} = H$	(140.18)	-	(A)	(45 Min)		20111
	K = H	(140,10)	6	CH ₂ CH ₂ COCl	CH ₂ Ch	77	
			Ū	(B)	(60 Min)		
16	PI-C.H.	C.H.O.	6	(CHANCHCOC)	CH ₂ Ch	39	85/14
10	$R^2 = R^3 = CH_2$	(154.21)	v	(B)	(18 Std.)	27	00, 1 .
17	$\mathbf{R}^{1} = \mathbf{C} \cdot \mathbf{H}_{c}$	(1, 4, 2, 1)	2	CH ₂ (CH ₂) _C OCl	CH _C L	61	80/0.1
17	$R^2 = CH_2(CH_2), R^3 = H$	(196.29)	-	(A)	(2 Std)	01	00, 0, 1
	K = CH3(CH2)4, K = H	(1)0,2))	6	CH.(CH.)COCI	CH ₂ Ch	66	
			v	(B)	(60 Min)	00	
10	PL-CH.	C. H. O.	4	(CH-)-CCH-COC	CH ₂ CN	66	90/14
10	$R^2 = (CH_1)_1 C R^3 = H$	(168.24)	-	(B)	(60 Min)	00	20/14
10	$R^{1} = CH_{1} R^{2} = C_{1}H_{2}$	(100,24)	4	C/H/CH/COCI	$CH_{1}CN$	43	85/01
ν	$R^{3} - H$	(188.23)	7	(B)	(45 Min)	45	00/0,1
20	$\mathbf{R}^{1} = \mathbf{C}_{0}\mathbf{H}_{0}$ $\mathbf{R}^{2} = \mathbf{C}_{0}\mathbf{H}_{0}$	C_{100}	2	C.H.CH.COCI	CH ₂ Ch	70	100/0.1
20	$R^{3} = H$	(202.25)	-	(A)	(60 Min)	10	100/0,1
	K II	(202,23)	6	C4H4CH4COCI	CH ₂ Ch	74	
			v	(B)	(60 Min.)		
21	$R^1 = C_2 H_c R^2 = C_c H_c$	CicHao	6	CH ₂ CH ₂ (C ₄ H ₄)CHCOCl	CH ₂ Ch	49	110/01
~1	$R^3 = C_2 H_2$	(23031)	v	(B)	$(2^{1}/_{5} \text{ Std.})$.,	
22	$R^{1} = C_{2}H_{c}$	CoHioOs	6	H ₂ COOCCH ₂ COCl	CH ₂ Ch	27	100/14
	$R^2 = COOCH_2 R^3 = H$	(184.19)	÷	(B)	(2 Std.)	<u> </u>	
23	$R^1 = C_2 H_5$	C-H-ChO	6	CECHCOCI	CH ₂ CN	10	40/0.1
-0	$R^2 = R^3 = Cl$	(195.05)	-	(B)	(60 Min.)		

Tabelle 3a. Allencarbonsäureester: Experimentelle Daten

^a) Alle Elementaranalysenwerte stimmen innerhalb der Fehlergrenzen $(\pm 0,3\%)$ mit den berechneten Werten überein.

b) Vgl. Tabellen 1 und 2.

c) Ermittelt aufgrund der Kugelrohrdestillation im Luftbad. Das bei höher siedenden Allencarbonsäureestern mitdestillierende Triphenylphosphinoxid wurde mit wasserfreiem Zinkchlorid komplexiert und abgetrennt (vgl. [18] und dort zit. Lit.).

	R ³ COOR ¹	IRS	pektru	m ^a)	¹ H-NMRSp	ektrum ^b)			Lit. ^c)
_	R^2 H \overline{C}	=C≕C	C=O	Aromat	R ¹	H-C(2)	R ²	R ³	
7	$R^1 = CH_3,$ $R^2 = R^3 = H$	1965 1940	1725		3,68 (s)	5,65-5,35 ^d)	5,25-5	,00°)	[19][26][39] [50] [51]
8	$R^1 = CH_3,$ $R^2 = CH_3, R^3 = H$	1968	1725		3,65 (s)	5,70-5,30 (<i>m</i>)	1,80 (<i>m</i>)	5,70-5,30 (<i>m</i>)	
9	$R^1 = C_2 H_5,$ $R^2 = C H_3, R^3 = H$	1965	1720		4,11 (qa, J = 7,0) 1,26 (t I = 7,0)	5,68-5,25 (<i>m</i>)	1,78 (<i>m</i>)	5,68-5,25 (m)	
10	$R^1 = CH_3,$ $R^2 = C_2H_5,$ $R^3 = CH_3$	1962	1725		3,68 (s)	5,41 (m)	2,08 (m) 1,08 (t, J = 7,5)	1,82 (br. <i>d</i>)	[51]
11	$R^1 = CH_3,$ $R^2 = (CH_3)_3C, R^3 = H_3$	1962 H	1725		3,66 (s)	5,51 (s)	1,11 (s)	5,51 (s)	
12	$R^{1} = C_{2}H_{5},$ $R^{2} = (CH_{3})_{3}C,$ $R^{3} = H$	1962	1722		4,11 (qa, J = 7,0) 1,25 (t, J = 7,0)	5,51 (s)	1,12 (s)	5,51 (s)	
13	$R^1 = CH_3,$ $R^2 = C_6H_5, R^3 = H$	1962	1725	1601 1583 1499	3,70 (s)	5,89 (<i>d</i> , <i>J</i> = 6,4)	7,23 (br. s)	6,50 (<i>d</i> , <i>J</i> = 6,4)	
	R^3 C=C=C CH_3				R ¹	H ₃ C-C(2)	R ²	R ³	
14	$R^1 = C_2 H_5,$ $R^2 = R^3 = H$	1970 1945	1715		4,15 (<i>qa</i> , $J = 7,1$) 1,27	1,83 $(t, J=3,1)$	5,00 (qa,	<i>J</i> =3,1)	[20a] [23] [27]
15	$R^1 = C_2 H_5,$ $R^2 = C H_3, R^3 = H$	1960	1710		(l, J = 7, 1) 4,15 (qa, J = 7, 1) 1,25 (l, J = 7, 1)	1,80 (<i>d</i> , <i>J</i> = 3,0)	1,74 (<i>d</i> , <i>J</i> = 7,2)	5,33 $(qa \times qa, J=7,2)$	[18] [20a] [26]
16	$R^1 = C_2 H_5,$ $R^2 = R^3 = C H_3$	1968	1715		(1, J = 7, 1) 4,13 (qa, J = 7, 0) 1,27 (t, J = 7, 0)	1,80 (s)	1,79 (s)	1,79 (s)	[23] [26]
17	$R^1 = C_2H_5,$ $R^2 = CH_3(CH_2)_4,$ $R^3 = H$	1959	1710		$\begin{array}{l} 4,16 \\ (qa, J=7,1) \\ 1,20 \\ (t, J=7,1) \end{array}$	1,82 (<i>d</i> , <i>J</i> = 3,0)	2,25-0,65 (<i>m</i>)	5,57-5,24 (m)	[23]
18	$R^1 = CH_3,$ $R^2 = (CH_3)_3C, R^3 = H_3$	1962 H	1722		3,67 (s)	1,83 (<i>d</i> , $J = 3,0$)	1,10 (s)	5,33 (<i>qa</i> , <i>J</i> = 3.0)	
19	$R^1 = CH_3,$ $R^2 = C_6H_5, R^3 = H$	1951	1720	1601 1583 1499	3,67 (s)	1,97 (d, J=3,0)	7,20 (br. s)	6,34 (<i>qa</i> , <i>J</i> = 3,0)	[52]
20	$R^1 = C_2 H_5,$ $R^2 = C_6 H_5, R^3 = H$	1952	1715	1603 1585 1502	4,16(qa, J = 7,0)1,23(t, J = 7,0)	1,96 (<i>d</i> , <i>J</i> = 3,0)	7,20 (br. <i>s</i>)	6,36 (<i>qa</i> , <i>J</i> =3,0)	[20a] [23]

Tabelle 3b. Allencarbonsäureester: Spektroskopische Daten

\mathbb{R}^{3}					R ¹	H ₃ C-C(2)	R ²	R ³	
21	$R^{1} = C_{2}H_{5},$ $R^{2} = C_{6}H_{5},$ $R^{3} = C_{2}H_{5}$	1951	1713	1598 1579 1493	4,16(qa, J=7,1)1,23(t, J=7,1)	1,95 (s)	7,45-6,95 (m)	2,50 (qa, J = 7,2) 1,15 (t, J = 7,2)	[20b] [53]
22	$R^1 = C_2 H_5,$ $R^2 = COOCH_3,$ $R^3 = H$	1961	1720		4,25 (qa, J = 7,0) 1,33 (t, J = 7,0)	2,00 (<i>d</i> , <i>J</i> = 3,0)	3,76 (s)	5,80 (<i>qa</i> , <i>J</i> = 3,0)	[18]
23	$R^1 = C_2 H_5,$ $R^2 = R^3 = C1$	1970	1725		$\begin{array}{l} 4,25 \\ (qa, J=7,0) \\ 1,33 \\ (t, J=7,0) \end{array}$	2,05 (s)			

Tabelle 3b (Fortsetzung)

^a) Aufgenommen als Film; Angaben in cm⁻¹.

b) Bei 90 MHz in CCl₄; chemische Verschiebungen in ppm, Multiplizität, Kopplungskonstanten J in Hz; vgl. [18].

c) In der zit. Lit. fehlen zum Teil die vorliegenden Spektraldaten.

d) X-Teil des A_2X -Systems (${}^4J_{A,X} = 6,6$).

e) *A*-Teil des A_2X -Systems (${}^4J_{A,X} = 6,6$).

Tabelle 4. Deuterium-markierte Allencarbonsäureester^a)

$= \dot{c} = \dot{c} < \dot{c}$	Phosphor- verbin- dung ^b)	Säurechlorid (Lösungsmittel)	Reaktions- dauer (Ausbeute)	Lage der Markierung ^e), D-Anteile ^d)
$R^1 = D, R^2 = R^3 = H$	24	CH₃COCl	10 Min.	$D-C(2) = 65^{d}$
		(CH_2Cl_2)	(40%)	$D-C(4)=35^{d})^{e}$
$R^{1} = D, R^{2} = CH_{3},$	24	CH ₃ CH ₂ COCl	20 Min.	D - C(2) = 75
$R^3 = H$		(CH ₃ CN)	(36%)	D - C(4) = 25
$R^1 = D, R^2 = (CH_3)_3C,$	24	(CH ₃) ₃ CCH ₂ COCl	2 Std.	D - C(2) = 75
$R^3 = H$		(CH ₃ CN)	(51%)	D - C(4) = 25
$R^1 = D, R^2 = C_6 H_5,$	24	C ₆ H ₅ CH ₂ COCl	2 Std.	D - C(2) = 50
$R^3 = H$		(CH ₃ CN)	(23%)	D - C(4) = 50
$R^1 = CD_3, R^2 = R^3 = H$	25	CH ₁ COCl	30 Min.	$D_3C - C(2) = 100^d$
0.		(CH ₃ CN)	(38%)	$D - C(4) = 0^{d})^{e}$
$R^1 = CD_3, R^2 = CH_3,$	25	CH ₃ CH ₂ COCl	30 Min.	$D_3C - C(2) = 100^d$
$R^3 = H$		(CH ₃ CN)	(24%)	$D-C(4)=0^{d}$
	$= \stackrel{\circ}{c} = \stackrel{\circ}{c} \stackrel{\circ}{\sim} $	$= \overset{\circ}{c} = \overset{\circ}{c} \overset{\circ}{\underset{R^{3}}{\overset{\circ}{\underset{R^{3}}{\overset{\circ}{\underset{R^{3}}{\underset{R^{3}}{\overset{\circ}{\underset{R^{3}}{\atop_{R^{3}}{\underset{R^{3}}}{\underset{R^{3}}{\atopR^{3}}{\underset{R^{3}}{\underset{R^{3}}{\underset{R^{3}}{\underset{R^{3}}{\underset{R^{3}}{\underset{R^{3}}{\atopR^{3}}{\underset{R^{3}}{\atopR^{3}}{\underset{R^{3}}{\atopR^{3}}{\underset{R^{3}}{R^{3}}{\atopR^{3}}{R^{3}}{R^{3$	$\begin{array}{cccc} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ \\$	$\begin{array}{cccc} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} Phosphor-\\ verbin-\\ dung^b \end{array} \end{array} & \begin{array}{c} \begin{array}{c} Säurechlorid\\ (Lösungsmittel) \end{array} & \begin{array}{c} Reaktions-\\ dauer\\ (Ausbeute) \end{array} \\ \hline \\ R^1 = D, R^2 = R^3 = H \\ R^1 = D, R^2 = CH_3, \\ R^3 = H \\ $

a) Die Formeln der I. Spalte sind nach der letzten Spalten zu interpretieren (Prozentsatz der Markierung).

b) Vgl. Tabelle 1.

^{c)} Bestimmung aufgrund von ¹H-NMR.-Spektren (90 MHz in CCl₄); Protonen der Ester-methylgruppe als Integrationsstandard (vgl. *Tab. 3b*). Bei **26-29** erfolgte die ¹H-NMR.-spektroskopische D-Bestimmung in Gegenwart von Eu(fod)₃. Bez. Spektraldaten der **30** und **31** entsprechenden nichtdeuterium-markierten Verbindungen vgl. [19] bzw. [18].

d) Zusätzliche unabhängige Bestimmung aufgrund der ²H-NMR.-Spektren (15,4 MHz in CCl₄).

e) Der Prozentsatz bezieht sich auf die zwei H(D)-C(4).

Experimenteller Teil

Allgemeine Bemerkungen. Siehe [18]. Die Bereitung der zur Allencarbonsäureester-Synthese verwendeten Phosphoniumsalze (Tab. 1) bzw. Phosphoniumylide (Tab. 2) erfolgte nach bekannten Vorschriften [18] [23] [35] [42] [48]; es werden hier nur die wesentlichen experimentellen und spektroskopischen Aspekte wiedergegeben. Die eingesetzten allgemein käuflichen Säurechloride wurden destilliert oder wie im Falle von 2-Phenylbutyryl- und t-Butylacetylchlorid (=3,3-Dimethylbutyrylchlorid) aus den entsprechenden Säuren mit Thionylchlorid nach [49] hergestellt. Acetonitril (Merck, p.a.) wurde über Phosphorpentoxid getrocknet und destilliert; Methylenchlorid (Merck, p.a.) wurde über Aluminiumoxid (basisch, Woelm, Aktivitätsstufe I) filtriert. Triäthylamin (Fluka AG, puriss.) wurde ohne weitere Reinigung verwendet.

1. Allgemeine Arbeitsvorschriften zur Herstellung von Allencarbonsäureestern (Tab. 3). – A. Umsetzungen von Phosphoniumsalzen (s. Tab. 1). Zu einer Lösung von 10 mmol Phosphoniumsalz in 40 ml Methylenchlorid (oder Acetonitril) unter N₂ werden bei RT. 20 mmol Triäthylamin in 10 ml Methylenchlorid (oder Acetonitril) gegeben. Anschliessend werden 10 mmol Säurechlorid in 10 ml Methylenchlorid (oder Acetonitril) so zu der klaren Lösung getropft, dass die Temp. nicht ansteigt. Die Bildung der Allencarbonsäureester erfolgt meist sehr rasch und kann mittels DC. verfolgt werden (vgl. [18]). Nach beendeter Reaktion wird wie folgt aufgearbeitet: In Methylenchlorid. Eindampfen der Lösung i.RV. ($\leq 20^{\circ}/12$ -14 Torr), Ausschütteln des viskosen Rückstandes mit ca. 50 ml Pentan, Filtrieren der Pentanphase und erneutes Eindampfen i.RV., abschliessende Vakuumdestillation im Kugelrohr. In Acetonitril. Verdünnen der Lösung mit der gleichen Menge Wasser, 3mal Ausschütteln mit je 20 ml Pentan, Trocknen der Pentanphase über MgSO₄ und Vakuumdestillation im Kugelrohr der i.RV. eingedampften Lösung.

Phosphor- verbindung ^a)	Base $(pK_a)^b$)	Lösungsmittel (Reaktionsdauer)	Allencarbon- säureester (Ausbeute)
4,0 mmol 42	6,2 mmol Pyridin	10 ml CH ₂ Cl ₂	
	(5,25 [44])	(19 Std.)	
4,0 mmol 42	4,3 mmol N(C_2H_5) ₃	$10 \text{ ml CH}_2\text{Cl}_2$	14
	(11,01 [44])	$(2\frac{1}{2}$ Std.)	(84%)
4,0 mmol 42	6,8 mmol DBU ^d)	$10 \text{ ml } CH_2Cl_2$	14
	$(>11)^{e}$	(17 Std.)	(81%)
4,0 mmol 42	4,5 mmol BuLi	10 ml CH ₂ Cl ₂	14
	$(>40)^{f}$	(4 Std.)	(60%)
1,6 mmol 43	0,8 mmol Strychnin	15 ml CH ₃ CN	$18 (R^1 = C_2 H_5)$
	(8,26 [44])	(19 Std.)	(7%)
2,0 mmol 44	2,0 mmol N(C_2H_5) ₃ · HCl	20 ml CH ₃ CN	^c)
	$+[N(C_2H_5)_3]$	(50 Std.)	
2,5 mmol 45	$2,5 \text{ mmol } N(C_2H_5)_3 \cdot HCl$	20 ml CH ₃ CN	-c)
	$+[N(C_2H_5)_3]$	(2 Std.) ^g)	

Tabelle 5. Umsetzungen von acylierten Phosphorverbindungen

a) Vgl. Tabellen 1 und 2.

^b) pK_a -Wert der konjugierten Säure.

c) Allencarbonsäureester-Bildung nicht nachweisbar (DC.).

d) DBU = 1.5-Diaza-5-bicyclo[5.4.0]undecen [54].

- Das vergleichbare 1,5-Diaza-5-bicyclo[4.3.0]nonen [55] ist eine stärkere Base als Triäthylamin (vgl. [56]).
- f) Vgl. hierzu [57] (siehe auch [58]).

8) Nach 2 Std. bei RT. wurde 18 Std. unter Rückfluss gekocht.

B. Umsetzungen von Phosphoniumyliden (s. Tab. 2). Gleiches Vorgehen wie bei den unter A beschriebenen Umsetzungen, nur dass 1 Mol-Äquiv. (10 mmol) Triäthylamin anstelle von 2 Mol-Äquiv. (vgl. A) eingesetzt wird. Aufarbeitung wie oben.

2. Deuterium-markierte Allencarbonsäureester. – Durch Umsetzen der deuterium-markierten Phosphoniumsalze 24 und 25 (*Tab. 1*) mit Säurechloriden nach der allgemeinen Vorschrift A werden die deuterierten Allencarbonsäureester 26-31 hergestellt (*Tab. 4*).

3. Umsetzungen von acylierten Phosphorverbindungen. - Die Phosphoniumsalze 42 und 43 (*Tab.1*) bzw. die Phosphoniumylide 44 und 45 (*Tab.2*) wurden mit verschiedenen Basen bei RT. umgesetzt, s. *Tabelle 5.* Entstanden dabei Allencarbonsäureester, so wurden diese wie unter A aufgearbeitet.

LITERATURVERZEICHNIS

- [1] D. R. Taylor, 'The Chemistry of Allenes', Chem. Rev. 67, 317 (1967).
- [2] J. E. Baldwin, R. H. Fleming & D. M. Simons, J. org. Chemistry 37, 3963 (1972).
- [3] J. Tendil, M. Verny & R. Vessière, Bull. Soc. chim. France 1972, 4027; iidem, ibid. 1976, 273; iidem, Tetrahedron 30, 579 (1974).
- [4] R. Gompper & D. Lach, Angew. Chemie 85, 582 (1973).
- [5] E. Schaumann & H. Mrotzek, Tetrahedron 35, 1965 (1979).
- [6] a) R. Gompper & U. Wolf, Liebigs Ann. Chem. 1979, 1388; b) iidem, ibid. 1979, 1406.
- [7] H. Strzelecka, Ann. Chim. 1966, 201.
- [8] G.R. Harvey & K.W. Ratts, J. org. Chemistry 31, 3907 (1966).
- [9] A. Aspect, P. Battioni, L. Vo-Quang & Y. Vo-Quang, C.r. hebd. Séances Acad. Sci. (C) 269, 1063 (1969).
- [10] a) P. Battioni, L. Vo-Quang & Y. Vo-Quang, Bull. Soc. chim. France (II) 1978, 401; b) iidem, ibid.
 (II) 1978, 415.
- [11] A. Huwiler, Dissertation, Universität Freiburg i. Ü. 1977.
- [12] a) W. Runge, 'Stereochemistry of Allenes', S.R. Landor Eds., im Druck; b) idem, 'Structural Chemistry', in S. Patai, 'The Chemistry of Allenes', im Druck; c) idem, 'Chirality and Chiroptical Properties', ibid., im Druck.
- [13] S.R. Sandler & W. Karo, 'Organic Chemistry', Vol. 1211, Academic Press, N.Y. 1971, S.1.
- [14] M. Murray, «Allene bzw. Kumulene», in Houben-Weyl, «Methoden der Organischen Chemie», Vol. 5 (2a), Herausgeber E. Müller, Georg Thieme Verlag, Stuttgart 1977, S. 963ff.
- [15] J. M. Reuter & R. G. Salomon, Tetrahedron Letters 1978, 3199.
- [16] A.P. Cowling & J. Mann, Chem. Commun. 1978, 1006.
- [17] M. Franck-Neumann & F. Brion, Angew. Chemie 91, 736 (1979).
- [18] R. W. Lang & H.-J. Hansen, Helv. 62, 1025 (1979).
- [19] R. W. Lang & H.-J. Hansen, Helv. 62, 1458 (1979).
- [20] a) W. Runge, G. Kresze & E. Ruch, Liebigs Ann. Chem. 1975, 1361; b) iidem, ibid. 756, 112 (1972).
- [21] G. Lüscher, Dissertation, ETH-Zürich 1922.
- [22] G. Wittig & A. Haag, Chem. Ber. 96, 1535 (1963).
- [23] H.-J. Bestmann & H. Hartung, Chem. Ber. 99, 1198 (1966).
- [24] W.S. Wadsworth, jr. & W.D. Emmons, J. Amer. chem. Soc. 83, 1733 (1961).
- [25] G. Aksnes & P. Frøyen, Acta chem. Scand. 22, 2347 (1968).
- [26] S.D. Andrews, A.C. Day & R.N. Inwood, J. chem. Soc. (C) 1969, 2443.
- [27] Z. Hamlet & W. D. Barker, Synthesis 1970, 543.
- [28] V. Y. Orlov, S.A. Lebedev, S. V. Ponomarev & I. F. Lutsenko, Z. obšč. Chim. 45, 696 (1975).
- [29] D. Borrmann, in Houben-Weyl, «Methoden der Organischen Chemie», Vol.7 (4), Herausgeber E. Müller, Georg Thieme Verlag, Stuttgart 1968, S. 53ff.
- [30] H. Strzelecka, M. Simalty-Siemiatycki & C. Prévost, C.r. hebd. Séances Acad. Sci. 257, 926 (1963);
 M. Simalty, H. Strzelecka & M. Dupré, ibid. (C) 265, 1284 (1967).
- [31] H.-J. Bestmann & H. Hartung, Angew. Chemie 75, 297 (1963); vgl. H.-J. Bestmann & R. Zimmermann, in 'Carbon-Carbon Bond Formation', Vol. I, R.L. Augustine, Ed., Marcel Dekker, Inc. New York 1979, S. 353ff.

- [32] P. Kolsaker & S. Borresen, Acta chem. Scand. B 33, 133 (1979).
- [33] a) H.-J. Bestmann, Angew. Chemie 77, 651 (1965); b) H.-J. Bestmann & B. Arnason, Chem. Ber. 95, 1513 (1962).
- [34] S.T.D. Gough & S. Trippett, J. chem. Soc. 1964, 543.
- [35] H.-J. Bestmann & H. Schulz, Chem. Ber. 95, 2921 (1962).
- [36] J.H. Wotiz & D.E. Mancuso, J. org. Chemistry 22, 207 (1957).
- [37] H.J. Hediger, «Infrarotspektroskopie», in «Methoden der Analyse in der Chemie», Bd. 11, Akademische Verlagsgesellschaft, Frankfurt am Main 1971, S. 88.
- [38] W. Runge, Z. Naturforsch. 32b, 1296 (1977).
- [39] W. Runge, Z. Naturforsch. 33b, 932 (1978).
- [40] S. Fliszár, R. F. Hudson & G. Salvadori, Helv. 46, 1580 (1963).
- [41] M. Schlosser & H.B. Tuong, Angew. Chemie 91, 675 (1979).
- [42] G. Märkl, Chem. Ber. 94, 3005 (1961).
- [43] C. Brouquet, Tetrahedron 29, 3595 (1973).
- [44] 'Handbook of Chemistry & Physics', 55th Edition, The Chemical Rubber Company, Cleveland 1974.
- [45] D. Borrmann & R. Wegler, Chem. Ber. 99, 1245 (1966); iidem, ibid. 100, 1575 (1967).
- [46] F.I. Luknitskii & B.A. Vovsi, Russian Chem. Rev. 38, 487 (1969).
- [47] J. Cymerman Craig & M. Moyle, J. chem. Soc. 1963, 5356; R.J. Bushby, Quart. Rev. 24, 585 (1970).
- [48] O. Isler, H. Gutmann, M. Montavon, R. Rüegg, G. Ryser & P. Zeller, Helv. 40, 1242 (1957).
- [49] «Organikum», VEB Deutscher Verlag der Wissenschaften, Berlin 1969, 9. Aufl., S. 469.
- [50] E. C. Taylor, R. L. Robey & A. McKillop, J. org. Chemistry 37, 2797 (1972).
- [51] L. Crombie, P.A. Jenkins & D.A. Mitchard, J. chem. Soc. (Perkin I) 1975, 1081; L. Crombie, P.A. Jenkins & J. Roblin, ibid. 1975, 1090.
- [52] W. Runge & J. Firl, Ber. Bunsenges. physik. Chem. 79, 913 (1975).
- [53] H.-J. Bestmann & I. Tömösközi, Tetrahedron 24, 3299 (1968).
- [54] H. Oediger & F. Möller, Angew. Chemie 79, 53 (1967).
- [55] H. Oediger, H.-J. Kabbe, F. Möller & K. Eiter, Chem. Ber. 99, 2012 (1966).
- [56] A.K. Bose, C.S. Narayanan & M.S. Manhas, Chem. Commun. 1970, 975.
- [57] R.E. Dessy, W. Kitching, Th. Psarras, R. Salinger, A. Chen & T. Chivers, J. Amer. chem. Soc. 88, 460 (1966).
- [58] D.J. Cram, 'Fundamentals of Carbanion Chemistry', Academic Press, Inc., New York 1965, S. 19.